Helvar

Käyttöasteiden mittaaminen ja tiedon hyödyntäminen

"How lighting sensors enable smarter and more sustainable buildings"

Henri Juslén

Turning Everyday Places into Brighter Spaces

Why Lighting Control?

To Improve Wellbeing

To Increase Flexibility

To Save Energy

Basic lighting control –

- **"Occupancy" detection** automated on/off
- Daylight harvesting Controlling artificial lighting depending on natural light availability.
- Scene setting changing lighting scene depending on needs

Table 33 —Offices										
Ref. no.	Type of task/activity area	Ē _m lx		U _o	R.	Rugl	\bar{E}_{mz} lx	$\tilde{E}_{m,wall}$ lx	Ē _{m.ceiling} lx	Specific requirements
		required ^a	modifiedb				$U_{\circ} \ge 0,10$			
33.1	Filing, copying, etc.	300	500	0,40	80	19	100	100	75	
33.2	Writing, typing, reading, data processing	500	1 000	0,60	80	19	150	150	100	DSE-work, see 5.9 room brightness, see 6.3 and Annex B Lighting should be controllable, see 6.2.4. For smaller cellular office the wall requiremen applies to the front wall. Fo other walls a lowe requirement of minimu 75 kx could be accepted.
33.3	Technical drawing	750	1 500	0,70	80	16	150	150	100	DSE-work, see 5.9 room brightness, see 6.7
33.4	CAD work stations	500	1 000	0,60	80	19	150	150	100	DSE-work, see 5.9.
33.5.1	Conference and meeting rooms	500	1 000	0,60	80	19	150	150	100	Lighting should be controllable, see 6.2.4.
33.5.2	Conference table	500	1 000	0,60	80	19	150	150	100	Lighting should be controllable, see 6.2.4.
33.6	Reception desk	300	750	0,60	80	22	100	100	75	If reception desk include regular work station task these should be li accordingly.
33.7	Archiving	200	300	0.40	80	25	75	75	50	

e.g. 1000lux e.g. 500lux e.g. 300lux

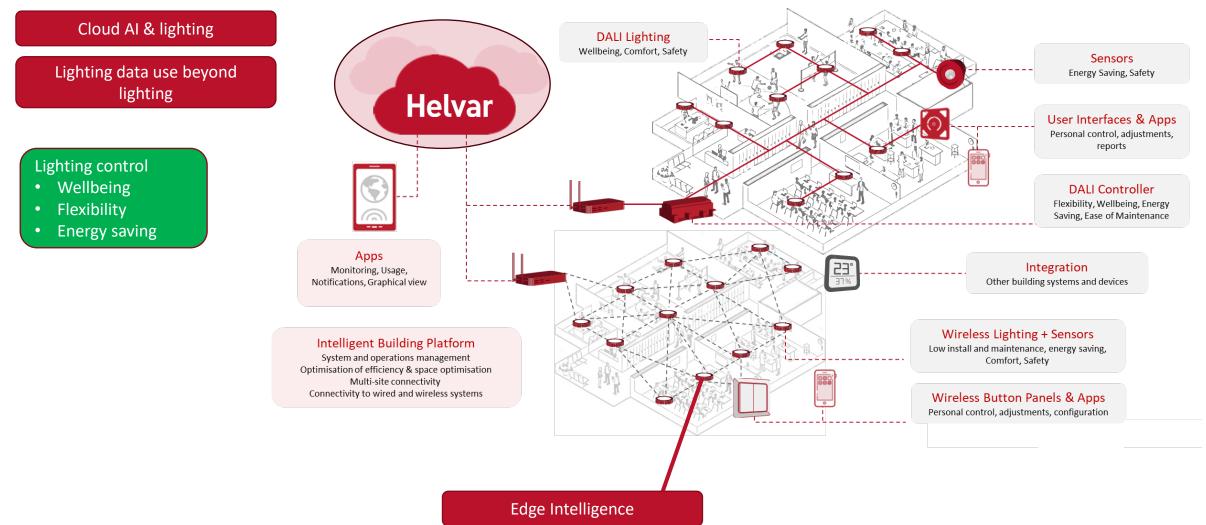
EN Norm Approach is

Context modifiers for increase of maintained illuminance;

- errors are costly to rectify
- accuracy, higher productivity or increased concentration is of great importance;

Helvar

- task details are of unusually small size or low contrast
- the task is undertaken for an unusually long time;
- the task area or activity area has a low daylight provission
- the visual capacity of the worker is below normal


Decreasing illuminance by one step may be considered when conditions

- task details are of an unusually large size or high contrast
- The task is undertaken for an unusually short time.

Lighting Networks

Lighting-related Sensors

Typically, lighting-related sensors (PIR & LIGHT) are used to:

- Turn on the lights without noticeable delay
- Turn off the lights after people have left the space
- Keep lights at the required level

Why use lighting sensors for something else?

Less sensors mean

- Less COSTS
 - Initial investments
 - Design, installation, operation, maintenance
- Smaller carbon footprint
 - Less embodied carbon
 - Less energy consumption
- Better aesthetics less sensor acne

Helvar

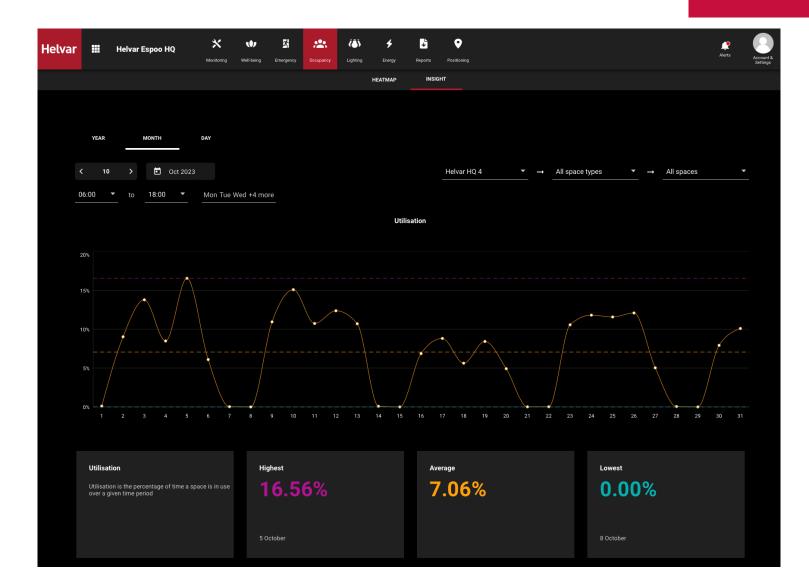
Luminaire-based Sensors

Area Sensors

Lighting-related DATA supports smart buildings

Helvar

- ✓ Lighting can work better using less energy / giving better support for people's wellbeing
- ✓ Other building systems can benefit from the same data, and better support wellbeing & smarter use of energy


Past Data

Reports & Recommendations

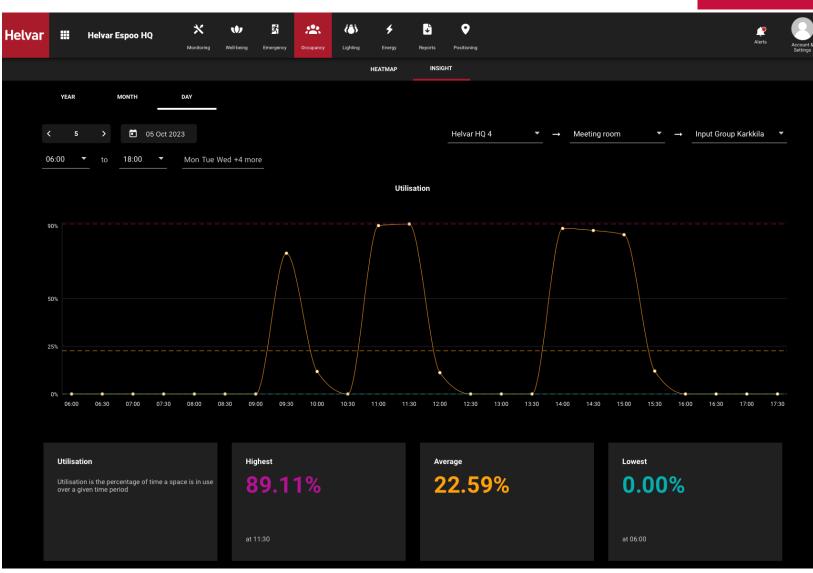
Understanding building usage Differences / abnormalities Reporting periods? Finding Trends

- Adjusting timings
- Adjusting levels

"Manual changes"

Helvar

Turning Everyday Places into Brighter Spaces


Past Data

Reports & Recommendations

Understanding building usage Differences / abnormalities Reporting periods? Finding Trends

- Adjusting timings
- Adjusting levels

"Manual changes"

Past Data

Reports & Recommendations

Understanding building usage Differences / abnormalities Reporting periods? Finding Trends

- Adjusting timings
- Adjusting levels

"Manual changes"

Zone 5

Total savings

06:00

20:00

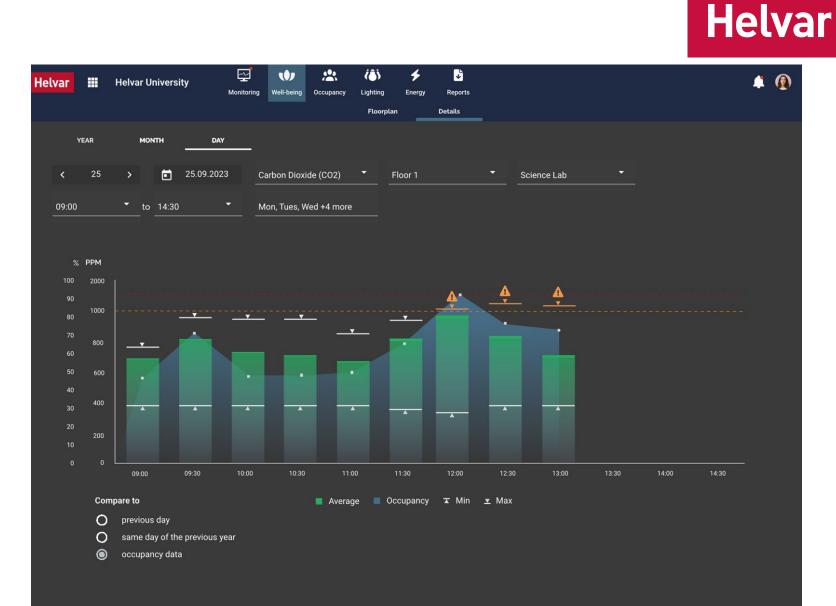
Helvar

235 min

45

06:20

19:35

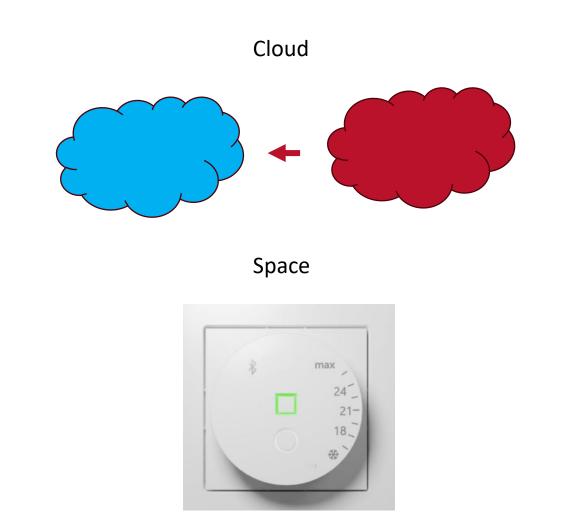

Past Data

Reports & Recommendations

Understanding building usage Differences / abnormalities Reporting periods? Finding Trends

- Adjusting timings
- Adjusting levels

"Manual changes"


Live Data

Direct inputs & Alerts

LIVE data can give inputs like:

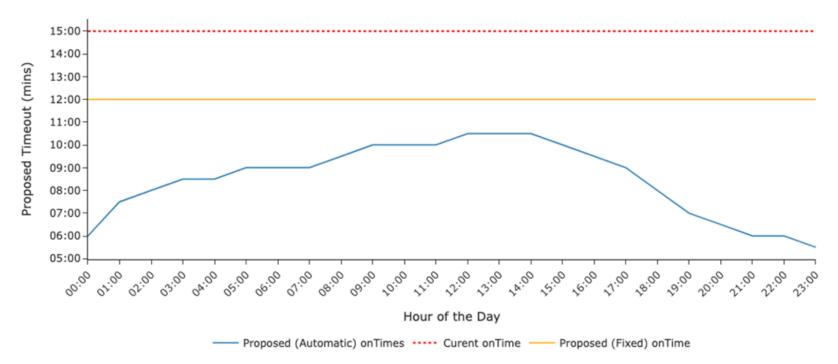
- If space is occupied, keep or turn 'something on' at a 'certain level', send info to....
- If space has been occupied X minutes...
- If space is unoccupied, act...
- If bigger area is occupied/unoccupied...

"Automatic changes, Alerts, Inputs"

Predictions

Leading inputs & Warnings

Lighting example


PIR optimisation

HVAC example

- Using same predictions as an input for HVAC
- Adding new data, and data from other sources

"Automatic changes, Warnings & Inputs"

Automatic vs Fixed Pir Optimisation

New Senses will increase opportunities

Adding new senses (like sensing additional environmental parameters) to lighting-related sensors means:

- ✓ Lighting can work even better use less energy and give better support for people's wellbeing
- Other building-related systems can benefit more from the same data, and better support wellbeing & smart energy usage

Lighting requires sensors and **'light speed'** sensor networks, which are already in buildings.

Lighting-based sensor data can give insights for other smart building systems in a very **cost-efficient** & **sustainable** way.

PAST data, LIVE data and PREDICTIONS have their own unique use cases, which experts of each individual building technology area know best and can develop further.